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An empirical exercise

An empirical exercise

To illustrate the performance of the several estimators, we make use of
the original AB dataset, available within Stata with webuse abdata.
This is an unbalanced panel of annual data from 140 UK firms for
1976–1984. In their original paper, they modeled firms’ employment n
using a partial adjustment model to reflect the costs of hiring and firing,
with two lags of employment.

Other variables included were the current and lagged wage level w, the
current, once- and twice-lagged capital stock (k) and the current,
once- and twice-lagged output in the firm’s sector (ys). All variables
are expressed as logarithms. A set of time dummies is also included to
capture business cycle effects.
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An empirical exercise

If we were to estimate this model ignoring its dynamic panel nature, we
could merely apply regress with panel-clustered standard errors:
Try it out:

regress n nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr*, cluster(id)

One obvious difficulty with this approach is the likely importance of
firm-level unobserved heterogeneity. We have accounted for potential
correlation between firms’ errors over time with the cluster-robust VCE,
but this does not address the potential impact of unobserved
heterogeneity on the conditional mean.

We can apply the within transformation to take account of this aspect
of the data: Try it out:

xtreg n nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr*, fe cluster(id)
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An empirical exercise

The fixed effects estimates will suffer from Nickell bias, which may be
severe given the short timeseries available.

OLS FE
nL1 1.045∗∗∗ (20.17) 0.733∗∗∗ (12.28)
nL2 -0.0765 (-1.57) -0.139 (-1.78)
w -0.524∗∗ (-3.01) -0.560∗∗∗ (-3.51)
k 0.343∗∗∗ (7.06) 0.388∗∗∗ (6.82)
ys 0.433∗ (2.42) 0.469∗∗ (2.74)
N 751 751
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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An empirical exercise

In the original OLS regression, the lagged dependent variable was
positively correlated with the error, biasing its coefficient upward. In the
fixed effects regression, its coefficient is biased downward due to the
negative sign on νt−1 in the transformed error. The OLS estimate of
the first lag of n is 1.045; the fixed effects estimate is 0.733.

Given the opposite directions of bias present in these estimates,
consistent estimates should lie between these values, which may be a
useful check. As the coefficient on the second lag of n cannot be
distinguished from zero, the first lag coefficient should be below unity
for dynamic stability.
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An empirical exercise

To deal with these two aspects of the estimation problem, we might
use the Anderson–Hsiao estimator to the first-differenced equation,
instrumenting the lagged dependent variable with the twice-lagged
level: Try it out:

ivregress 2sls D.n (D.nL1 = nL2) D.(nL2 w wL1 k kL1 kL2 ///
ys ysL1 ysL2 yr1979 yr1980 yr1981 yr1982 yr1983 )
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An empirical exercise

A-H
D.nL1 2.308 (1.17)
D.nL2 -0.224 (-1.25)
D.w -0.810∗∗ (-3.10)
D.k 0.253 (1.75)
D.ys 0.991∗ (2.14)
N 611
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Although these results should be consistent, they are quite
disappointing. The coefficient on lagged n is outside the bounds of its
OLS and FE counterparts, and much larger than unity, a value
consistent with dynamic stability. It is also very imprecisely estimated.
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An empirical exercise

The difference GMM approach deals with this inherent endogeneity by
transforming the data to remove the fixed effects. The standard
approach applies the first difference (FD) transformation, which as
discussed earlier removes the fixed effect at the cost of introducing a
correlation between ∆yi,t−1 and ∆νit , both of which have a term dated
(t − 1). This is preferable to the application of the within
transformation, as that transformation makes every observation in the
transformed data endogenous to every other for a given individual.

The one disadvantage of the first difference transformation is that it
magnifies gaps in unbalanced panels. If some value of yit is missing,
then both ∆yit and ∆yi,t−1 will be missing in the transformed data. This
motivates an alternative transformation: the forward orthogonal
deviations (FOD) transformation, proposed by Arellano and Bover (J.
Econometrics, 1995).
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An empirical exercise

In contrast to the within transformation, which subtracts the average of
all observations’ values from the current value, and the FD
transformation, that subtracts the previous value from the current
value, the FOD transformation subtracts the average of all available
future observations from the current value. While the FD
transformation drops the first observation on each individual in the
panel, the FOD transformation drops the last observation for each
individual. It is computable for all periods except the last period, even
in the presence of gaps in the panel.

The FOD transformation is not available in any of official Stata’s DPD
commands, but it is available in David Roodman’s xtabond2
implementation of the DPD estimator, available from SSC.
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An empirical exercise

To illustrate the use of the AB estimator, we may reestimate the model
with xtabond2, assuming that the only endogeneity present is that
involving the lagged dependent variable. Try it out:

xtabond2 n L(1/2).n L(0/1).w L(0/2).(k ys) yr*, gmm(L.n) ///
iv(L(0/1).w L(0/2).(k ys) yr*) nolevel robust small

Note that in xtabond2 syntax, every right-hand variable generally
appears twice in the command, as instruments must be explicitly
specified when they are instrumenting themselves. In this example, all
explanatory variables except the lagged dependent variable are taken
as “IV-style” instruments, entering the Z matrix as a single column. The
lagged dependent variable is specified as a “GMM-style” instrument,
where all available lags will be used as separate instruments. The
noleveleq option is needed to specify the AB estimator.
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An empirical exercise

A-B
L.n 0.686∗∗∗ (4.67)
L2.n -0.0854 (-1.50)
w -0.608∗∗ (-3.36)
k 0.357∗∗∗ (5.95)
ys 0.609∗∗∗ (3.47)
N 611
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

In these results, 41 instruments have been created, with 17
corresponding to the “IV-style” regressors and the rest computed from
lagged values of n. Note that the coefficient on the lagged dependent
variable now lies within the range for dynamic stability. In contrast to
that produced by the Anderson–Hsiao estimator, the coefficient is quite
precisely estimated.
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An empirical exercise

There are 25 overidentifying restrictions in this instance, as shown in
the first column below. The hansen_df represents the degrees of
freedom for the Hansen J test of overidentifying restrictions. The
p-value of that test is shown as hansenp.

All lags lags 2-5 lags 2-4
L.n 0.686∗∗∗ (4.67) 0.835∗ (2.59) 1.107∗∗∗ (3.94)
L2.n -0.0854 (-1.50) 0.262 (1.56) 0.231 (1.32)
w -0.608∗∗ (-3.36) -0.671∗∗ (-3.18) -0.709∗∗ (-3.26)
k 0.357∗∗∗ (5.95) 0.325∗∗∗ (4.95) 0.309∗∗∗ (4.55)
ys 0.609∗∗∗ (3.47) 0.640∗∗ (3.07) 0.698∗∗∗ (3.45)
hansen_df 25 16 13
hansenp 0.177 0.676 0.714
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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An empirical exercise

In this table, we can examine the sensitivity of the results to the choice
of “GMM-style” lag specification. In the first column, all available lags
of the level of n are used. In the second column, the lag(2 5) option
is used to restrict the maximum lag to 5 periods, while in the third
column, the maximum lag is set to 4 periods. Fewer instruments are
used in those instances, as shown by the smaller values of sar_df.

The p-value of Hansen’s J is also considerably larger for the
restricted-lag cases. On the other hand, the estimate of the lagged
dependent variable’s coefficient appears to be quite sensitive to the
choice of lag length.
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An empirical exercise

We illustrate estimating this equation with both the FD transformation
and the forward orthogonal deviations (FOD) transformation:

First diff FOD
L.n 0.686∗∗∗ (4.67) 0.737∗∗∗ (5.14)
L2.n -0.0854 (-1.50) -0.0960 (-1.38)
w -0.608∗∗ (-3.36) -0.563∗∗∗ (-3.47)
k 0.357∗∗∗ (5.95) 0.384∗∗∗ (6.85)
ys 0.609∗∗∗ (3.47) 0.469∗∗ (2.72)
hansen_df 25 25
hansenp 0.177 0.170
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The results appear reasonably robust to the choice of transformation,
with slightly more precise estimates for most coefficients when the
FOD transformation is employed.
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An empirical exercise

We might reasonably consider, as did Blundell and Bond (J.
Econometrics, 1998), that wages and the capital stock should not be
taken as strictly exogenous in this context, as we have in the above
models.

Reestimate the equation producing “GMM-style” instruments for all
three variables, with both one-step and two-step VCE:
Try it out:

xtabond2 n L(1/2).n L(0/1).w L(0/2).(k ys) yr*, gmm(L.(n w k)) ///
iv(L(0/2).ys yr*) nolevel robust small
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An empirical exercise

One-step Two-step
L.n 0.818∗∗∗ (9.51) 0.824∗∗∗ (8.51)
L2.n -0.112∗ (-2.23) -0.101 (-1.90)
w -0.682∗∗∗ (-4.78) -0.711∗∗∗ (-4.67)
k 0.353∗∗ (2.89) 0.377∗∗ (2.79)
ys 0.651∗∗∗ (3.43) 0.662∗∗∗ (3.89)
hansen_df 74 74
hansenp 0.487 0.487
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The results from both one-step and two-step estimation appear
reasonable. Interestingly, only the coefficient on ys appears to be more
precisely estimated by the two-step VCE. With no restrictions on the
instrument set, 74 overidentifying restrictions are defined, with 90
instruments in total.
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An empirical exercise Illustration of system GMM

To illustrate system GMM, we follow Blundell and Bond, who used the
same abdata dataset on a somewhat simpler model, dropping the
second lags and removing sectoral demand. We consider wages and
capital as potentially endogenous, with GMM-style instruments.

Estimate the one-step BB model.
Try it out:

xtabond2 n L.n L(0/1).(w k) yr*, gmm(L.(n w k)) iv(yr*, equation(level)) ///
robust small

We indicate here with the equation(level) suboption that the year
dummies are only to be considered instruments in the level equation.
As the default for xtabond2 is the BB estimator, we omit the
noleveleq option that has called for the AB estimator in earlier
examples.
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An empirical exercise Illustration of system GMM

n
L.n 0.936∗∗∗ (35.21)
w -0.631∗∗∗ (-5.29)
k 0.484∗∗∗ (8.89)
hansen_df 100
hansenp 0.218
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

We find that the α coefficient is much higher than in the AB estimates,
although it may be distinguished from unity. 113 instruments are
created, with 100 degrees of freedom in the test of overidentifying
restrictions.
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An empirical exercise A second empirical exercise

A second empirical exercise

We also illustrate DPD estimation using the Penn World Table
cross-country panel. We specify a model for kc (the consumption
share of real GDP per capita) depending on its own lag, cgnp, and a
set of time fixed effects.

We first estimate the two-step ‘difference GMM’ form of the model with
(cluster-)robust VCE, using data for 1991–2007. We could use
testparm i.year after estimation to evaluate the joint significance
of time effects (listing of which has been suppressed).
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An empirical exercise A second empirical exercise

. use /Users/cfbaum/Dropbox/baum/IMFOct2013/Datasets/pwt6_3, clear
(Penn World Tables 6.3, August 2009)

. keep if inrange(year, 1991, 2007)
(7790 observations deleted)

. xtabond2 kc L.kc cgnp i.year, gmm(L.kc openc cgnp, lag(2 9)) ///
> iv(i.year) twostep robust noleveleq nodiffsargan
1991b.year dropped due to collinearity
1992.year dropped due to collinearity
Warning: Number of instruments may be large relative to number of observations.
...

Dynamic panel-data estimation, two-step difference GMM

Group variable: iso Number of obs = 2794
Time variable : year Number of groups = 188
Number of instruments = 283 Obs per group: min = 12
Wald chi2(17) = 120.15 avg = 14.86
Prob > chi2 = 0.000 max = 15

Corrected
kc Coef. Std. Err. z P>|z| [95% Conf. Interval]

kc
L1. .5744329 .0671504 8.55 0.000 .4428206 .7060452

cgnp .0215235 .1296622 0.17 0.868 -.2326097 .2756568

....
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An empirical exercise A second empirical exercise

(continued)

Instruments for first differences equation
Standard
D.(1991b.year 1992.year 1993.year 1994.year 1995.year 1996.year 1997.year
1998.year 1999.year 2000.year 2001.year 2002.year 2003.year 2004.year
2005.year 2006.year 2007.year)

GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/9).(L.kc openc cgnp)

Arellano-Bond test for AR(1) in first differences: z = -4.71 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = 0.38 Pr > z = 0.704

Sargan test of overid. restrictions: chi2(266) = 575.10 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(266) = 184.05 Prob > chi2 = 1.000
(Robust, but weakened by many instruments.)
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An empirical exercise A second empirical exercise

Given the relatively large number of time periods available, I have
specified that the GMM instruments only be constructed for lags 2–9 to
keep the number of instruments manageable. I am treating openc as
a GMM-style instrument. The autoregressive coefficient is 0.574, and
the cgnp coefficient is positive but insignificant. Although not shown,
the test for joint significance of the time effects has p-value 0.335.

We could also fit this model with the ‘system GMM’ estimator, which
will be able to utilize one more observation per country in the level
equation, and estimate a constant term in the relationship. I am
treating lagged openc as a IV-style instrument in this specification.
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treating lagged openc as a IV-style instrument in this specification.
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An empirical exercise A second empirical exercise

. xtabond2 kc L.kc cgnp i.year, gmm(L.kc cgnp, lag(2 8)) ///
> iv(i.year L.openc) twostep robust nodiffsargan
1991b.year dropped due to collinearity
2007.year dropped due to collinearity
Warning: Number of instruments may be large relative to number of observations.
...

Dynamic panel-data estimation, two-step system GMM

Group variable: iso Number of obs = 2982
Time variable : year Number of groups = 188
Number of instruments = 207 Obs per group: min = 13
Wald chi2(17) = 5852.66 avg = 15.86
Prob > chi2 = 0.000 max = 16

Corrected
kc Coef. Std. Err. z P>|z| [95% Conf. Interval]

kc
L1. .988957 .0164111 60.26 0.000 .9567917 1.021122

cgnp .0383551 .0184993 2.07 0.038 .0020971 .0746131

...
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An empirical exercise A second empirical exercise

(continued)

Instruments for first differences equation
Standard
D.(1991b.year 1992.year 1993.year 1994.year 1995.year 1996.year 1997.year
1998.year 1999.year 2000.year 2001.year 2002.year 2003.year 2004.year
2005.year 2006.year 2007.year L.openc)

GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/8).(L.kc cgnp)

Instruments for levels equation
Standard
1991b.year 1992.year 1993.year 1994.year 1995.year 1996.year 1997.year
1998.year 1999.year 2000.year 2001.year 2002.year 2003.year 2004.year
2005.year 2006.year 2007.year L.openc
_cons

GMM-type (missing=0, separate instruments for each period unless collapsed)
DL.(L.kc cgnp)

Arellano-Bond test for AR(1) in first differences: z = -5.47 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = 0.49 Pr > z = 0.621

Sargan test of overid. restrictions: chi2(189) = 352.18 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(189) = 180.40 Prob > chi2 = 0.661
(Robust, but weakened by many instruments.)
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An empirical exercise A second empirical exercise

Note that the autoregressive coefficient is much larger: 0.989 in this
context. The cgnp coefficient is positive and significant. The Hansen
test of this model has some power, in contrast to the difference GMM
specification.

We can also estimate the model using the forward orthogonal
deviations (FOD) transformation of Arellano and Bover, as described in
Roodman’s paper. The first-difference transformation applied in DPD
estimators has the unfortunate feature of magnifying any gaps in the
data, as one period of missing data is replaced with two missing
differences. FOD transforms each observation by subtracting the
average of all future observations, which will be defined (regardless of
gaps) for all but the last observation in each panel. To illustrate:
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An empirical exercise A second empirical exercise

. xtabond2 kc L.kc cgnp i.year, gmm(L.kc cgnp, lag(2 8)) ///
> iv(i.year L.openc) twostep robust nodiffsargan orthog
1991b.year dropped due to collinearity
1992.year dropped due to collinearity
Warning: Number of instruments may be large relative to number of observations.
...

Dynamic panel-data estimation, two-step system GMM

Group variable: iso Number of obs = 2982
Time variable : year Number of groups = 188
Number of instruments = 207 Obs per group: min = 13
Wald chi2(17) = 9421.59 avg = 15.86
Prob > chi2 = 0.000 max = 16

Corrected
kc Coef. Std. Err. z P>|z| [95% Conf. Interval]

kc
L1. .9844427 .0150613 65.36 0.000 .9549231 1.013962

cgnp .00181 .0229043 0.08 0.937 -.0430816 .0467016

...
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An empirical exercise A second empirical exercise

(continued)

Instruments for orthogonal deviations equation
Standard
FOD.(1991b.year 1992.year 1993.year 1994.year 1995.year 1996.year
1997.year 1998.year 1999.year 2000.year 2001.year 2002.year 2003.year
2004.year 2005.year 2006.year 2007.year L.openc)

GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/8).(L.kc cgnp)

Instruments for levels equation
Standard
1991b.year 1992.year 1993.year 1994.year 1995.year 1996.year 1997.year
1998.year 1999.year 2000.year 2001.year 2002.year 2003.year 2004.year
2005.year 2006.year 2007.year L.openc
_cons

GMM-type (missing=0, separate instruments for each period unless collapsed)
DL.(L.kc cgnp)

Arellano-Bond test for AR(1) in first differences: z = -5.47 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = 0.52 Pr > z = 0.605

Sargan test of overid. restrictions: chi2(189) = 348.68 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(189) = 178.45 Prob > chi2 = 0.698
(Robust, but weakened by many instruments.)
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An empirical exercise Ex ante forecasting

Using the FOD transformation, the autoregressive coefficient is a bit
smaller, and the cgnp coefficient loses its significance.

After any DPD estimation command, we may save predicted values or
residuals and graph them against the actual values:
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An empirical exercise Ex ante forecasting

. predict double kchat if inlist(country, "Italy", "Spain", "Greece", "Portugal
> ")
(option xb assumed; fitted values)
(1619 missing values generated)

. label var kc "Consumption / Real GDP per capita"

. xtline kc kchat if !mi(kchat), scheme(s2mono)
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An empirical exercise Ex ante forecasting
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An empirical exercise Ex ante forecasting

Although the DPD estimators are linear estimators, they are highly
sensitive to the particular specification of the model and its
instruments: more so in my experience than any other
regression-based estimation approach.

There is no substitute for experimentation with the various parameters
of the specification to ensure that your results are reasonably robust to
variations in the instrument set and lags used. A very useful reference
for DPD modeling is David Roodman’s paper “How to do xtabond2”,
available from http://ideas.repec.org.
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