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Regression analysis

@ Assume we have a collection of data on two economic quantities
x and y for n individuals or unit of analysis, that is:

{(xi,ysi=1,...,n}

@ Suppose further that we would like to describe the relation
between Y and X through the linear relation: y = 8y + B1x

= How do we get the values of the parameters ?
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Linear Fit Problem
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Linear Fit Problem

o Each line corresponds to a different slope and a different
intercept

o LinearFit1: y =12 +3 x x
o Linear Fit2: y =15+ 5 x x
e LinearFit1: y =15—-3 xx
@ We need a way to assess which line is best description of the data

@ A possible criterion to decide the best one is to start from the
error we make by using each line instead of the data points.

up =y — yi (D
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Linear Fit Problem
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Black segments represent the error we make by substituting y;
with g;, that is error; = y; — y; = y; — Po — [Si1x;. In this
example is y; — 12 — 3.
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Linear Fit Problem

@ For each pair (x;, y;) you have an error u;, so we can compute an
overall error just by summing, that is ), u;

o Is it ok ? Consider an example with 2 possible linear fits for a set
of 3 data points
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Linear Fit Problem

@ For each pair (x;,y;) you have an error ;, so we can compute an
overall error just by summing, that is ), u;

o Is it ok ? Consider an example with 2 possible linear fits for a set
of 3 data points

V' Linear Fit 1: errors are (1,1,1), so Sum of errors=3
v' Linear Fit 2: errors are (-6,0,8), so Sum of errors=2
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Linear Fit Problem

@ For each pair (x;,y;) you have an error ;, so we can compute an
overall error just by summing, that is ), u;

o Is it ok ? Consider an example with 2 possible linear fits for a set
of 3 data points

V' Linear Fit 1: errors are (1,1,1), so Sum of errors=3
v' Linear Fit 2: errors are (-6,0,8), so Sum of errors=2

— Sum is smaller when we actually make larger errors for 2 out of
3 points !!!
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Linear Fit Problem

@ To balance-out the effect of cancellations between positive and
negative errors, we define the Sum of Squared Residuals

SSR = Zuf Z (i — 9)°
i=1

@ We take this as the overall size of the mistake made when using
each linear fit

= A natural criterion to estimate the parameter is to find values of
Bp and 3, that minimize the SSR: this is called Ordinary Least
Square (OLS) method
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The OLS criterion for Linear Fitting

Formally the problem is

MIN yi — Bo — Br1z;)?
£§o.£'§1 Z( 0 l )

The two necessary conditions to identify the solution read

O (yi—Po—Prwi)? & A )
9ho = -2 (yi — Bo— P1zi) =0
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22w ,)"';0 Bred)” — =23 (% — Bo — Przi)z; =0
31

with solutions

‘1"3“ = Y — félX
i@ - D)wi—§) _ COV(x,y)
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The OLS criterion for Linear Fitting

m Once we have the numbers 5y and 31 for a given data set,
we write the OLS fitted line as a function of x:

g=Bo+ P
m The OLS fitted line allows us to predict y for any (sensible)
value of z.
m The intercept, Bo, is the predicted y when x = 0. (The
prediction is usually meaningless if x = 0 is not possible.)

m The slope, 1, allows us to predict changes in y for any
(reasonable) change in z:

Ay = 31 Az

m If Az =1, so that = increases by one unit, then Ay = By
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Algebraic properties of OLS

MIN > “(yi — fo — frzi)?

Bo.1 :

Necessary conditions to identify the solution are

E)Zi(!/i—f:io—J:xl-”i)z _ . ” A
T =0 {—2 Z,‘(Ui — 130 — 311’1’) =i}

—i)zi(yi_;?o_"?l‘ri)z =0 -2 Zi(y,' . 30 — ‘.‘:311',')1’1‘ =)
[2J65

i, =10 AP1. OLS residuals always add up to
B 0

AP2. Sample covariance between

Zi ﬁj.l',‘ =0

residuals u; and z; is 0.
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Why we like OLS ?

@ Suppose to have observations on a population of individuals
(even if most often we work with samples)

e We have data (Y;, X;), where this time X is a set of characteristics
(not just one variable)

@ We are interested in understanding to what extent knowledge of
Xs helps to characterize Y, or, similarly, to explain or predict Y
on the basis of the Xs. That is, we are interested in some
function of Y conditional on the Xs

e Y is the dependent variable

o The Xs are called covariates (aka regressors or explanatory
variables)
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Why we like OLS ?

@ Suppose to have observations on a population of individuals
(even if most often we work with samples)

e We have data (Y;, X;), where this time X is a set of characteristics
(not just one variable)

@ We are interested in understanding to what extent knowledge of
Xs helps to characterize Y, or, similarly, to explain or predict Y
on the basis of the Xs. That is, we are interested in some
function of Y conditional on the Xs

e Y is the dependent variable

o The Xs are called covariates (aka regressors or explanatory
variables)

= We spend next slides to see in which sense OLS are “good” in
achieving this aim
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Why we like OLS ?

Theorem (CEF decomposition properties)

}’, = E[y,'|X,'] =F € ,
where
| E[E,‘IX,‘] =0z

m ¢; is uncorrelated with any function of X;.

= Any variable y; can be decomposed into two pieces:

e A piece which is orthogonal to any function of the Xs
e A piece that is explained by the Xs, captured by the CEF
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Why we like OLS ?

Theorem (CEF decomposition properties)

}’, = E[y,'|X,'] =F € ,
where
| E[E,‘IX,‘] =0z

m ¢; is uncorrelated with any function of X;.

= Any variable y; can be decomposed into two pieces:

e A piece which is orthogonal to any function of the Xs
e A piece that is explained by the Xs, captured by the CEF

o EY; | X;] = [dt1fy(t|X; = x), with f, a conditional density, is
called the Conditional Expectation Function (CEF)
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CEF example 1
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CEF example 2
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Why we like OLS ?

Theorem (CEF prediction property)

Let m(X;) be any function of X;. Then

Elyi|X;] = arg min E [(y;i — III(X,‘))g]
m(X;)

so the CEF is the MMSE predictor of y; given X;.

= The CEF is the best predictor of Y given the Xs, among all
possible functions of the Xs (in MSE terms)
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Why we like OLS ?

Theorem (CEF prediction property)

Let m(X;) be any function of X;. Then

Elyi|X;] = arg min E [(y;i — III(X,‘))g]
m(X;)

so the CEF is the MMSE predictor of y; given X;.

= The CEF is the best predictor of Y given the Xs, among all
possible functions of the Xs (in MSE terms)

v The CEF represents a “precise” way to characterize the
relationship between Y and the Xs, if we ask “how can we
explain or predict Y, based on info about the Xs ?”
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Why we like OLS ? The CEF-OLS link

Theorem (the regression-CEF theorem)

The function X!3 provides the MMSE linear approzimation to
Elyi|X;], that is

B = arg min E {(E[y;|Xi] — X,’b)g} . (2)
b

Write

Elyi| Xi])? + (Eyi| Xi] — X1b)*

(yi — XIb)? = (y; —
+ 2(yi — Elyi| X)) (Elyi| X:] — Xib) .

The first term does not involve b and the last one has
expectation zero by the CEF-decomposition property.

— Problem (2) has same solution as MIN,, E [(¥; — X/b)?], which
is exactly what we do in OLS !!!
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Why we like OLS ? The CEF-OLS link

Theorem (the regression-CEF theorem)

The function X!3 provides the MMSE linear approzimation to
Elyi|X;], that is

B = arg min E {(E[y;|Xi] — X,’b)g} . (2)
b

Write
Elyi| Xi])? + (Eyi| Xi] — X1b)*

(yi — XIb)? = (y; —
+ 2(yi — Elyi| X)) (Elyi| X:] — Xib) .

The first term does not involve b and the last one has
expectation zero by the CEF-decomposition property.

— Problem (2) has same solution as MIN,, E [(¥; — X/b)?], which
is exactly what we do in OLS !!!
V" The linear regression function X’'b that we get from OLS is a
good approximation (the best in MMSE terms) of the CEF
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How good is the OLS-Population Regression Function ?

If the CEF is linear, then the (linear) Population Regression Function
is exactly the CEF
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How good is the OLS-PRF ?

In other situations, it is the best we can do (in MMSE terms), but not

always satisfactory
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How good is the OLS-PRF ?

In other situations, it is the best we can do (in MMSE terms), but not
always satisfactory

140
120 |-
100
80 |-
> 60
40 -~

20 -

-20 1 1 I I ! 1 1 |

Xi
[poPULATION E (v |x) [ CEF

Federico Tamagni Microeconometrics



OLS Regression recap and properties

@ We have learnt that each y; can be expressed as
yi = E(y|x;) + u;

where the error term u; captures how much we are distant from
the CEF
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OLS Regression recap and properties

@ We have learnt that each y; can be expressed as
yi = E(y|x;) + u;

where the error term u; captures how much we are distant from
the CEF

@ What is in the error term ?
e omitted factors, due to a wrong idea or theory about what we
should consider as predictors (or determinants) of y
e omitted factors due to lacking data on some Xs that we would like
to include
e wrong functional form
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OLS Regression recap and properties

@ Crucial property is the Zero Conditional Mean (ZCM) property:

ZCNI. The average, or expected, value of u, conditional on
X, is zero. Formally, F(u|x) =0,
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OLS Regression recap and properties

@ Crucial property is the Zero Conditional Mean (ZCM) property:

ZCNI. The average, or expected, value of u, conditional on
X, is zero. Formally, F(u|x) =0,

@ ZCM is crucial (with some other assumptions) to show that the
OLS estimates are unbiased

@ ZCM is crucial to show consistency of OLS estimates: (3
converges in prob to /3
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OLS Regression recap and properties

@ Do not forget that OLS confine the attention to the expected
value of the conditional distribution of y give X

o In general, one may be interested into other features of the same
distribution, so we would need different techniques in that case

o The conditional expected value might be particularly meaningless
if y has a very skewed distribution, since in that case the mean of
y says little
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OLS Regression recap and properties

@ Do not forget that OLS confine the attention to the expected
value of the conditional distribution of y give X

o In general, one may be interested into other features of the same
distribution, so we would need different techniques in that case

o The conditional expected value might be particularly meaningless
if y has a very skewed distribution, since in that case the mean of
y says little

@ Do not forget that the OLS weights a lot large errors (taking
squares of the distance from linear fit line)
o This means that few outliers can dramatically influence the
estimates of the parameters
e Often you either drop the outliers (if they are just few data-points)
or look for different techniques that are less influenced by outliers
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OLS Regression recap and properties

@ One popular and easy correction for outliers is Least Absolute

Deviation (LAD)
MIN Y (yi — fo— Brzs)?  MIN Y |y — o — Pz
Bo,1 ; Bo.S1 ;

OLS estimation LAD estimation
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OLS Regression: recap and properties

@ Another property worth noticing is HOMOSKEDASTICITY,
meaning that the variance of the error (and thus of the part of Y

not captured by the regression) is the same for every value of x:
VAR(u | x) = 0% > 0, Vx
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OLS Regression recap and properties

o HETEROSKEDASTICITY, instead, means that the variance of u
(or of the part of Y not captured by the regression line) varies
with the values of x
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Regression analysis: final remarks

o This was a highly simplified presentation: many other problems
remain in practical work

o The practice of econometrics is mostly to deal with real-world
situation where OLS assumptions are difficult to maintain (e.g.,
recall sample-selection or endogeneity discussed in Gibrat’s
regression)

e Maximum-likelihood is a general alternative, flexible and able to
also account for non-linearities: the idea is to assume a
distribution for the errors, and then write the joint probability
density and maximize it (e.g., recall above discussion about
parametric density estimation, or the non-linear estimation of the
scaling relationship between variance of growth and size)

@ Nevertheless, it is useful as a benchmark: economists like to
frame their research questions as “Is there an impact of a certain
variable X on the value of an outcome value Y, and if so how
strong is it ?”’
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