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The Game

Consider a simple game of chance, like tossing a coin or rolling
some dice, in which you bet an amount x and if you win you get
2x and if you loose you loose the entire bet.

Let W0 be the initial wealth so that if a fraction α is bet after the
game you have

W1 =

{
(1− α)W0 + 2αW0 = (1 + α)W0 if you win
(1− α)W0 if you loss

How much would you like to bet?



Classification of games

A game is favorable if the expected value of what you get is
higher than what you bet.

A game is fair if the expected value of what you get is equal to
what you bet.

A game is unfair if the expected value of what you get is lower
than what you bet.



wealth maximization

Let the probability to win be p. The expected wealth after
participation into the game can be computed

E[W1] = (1− α)W0 + p2αW0 = (1− α+ 2αp)W0

If p = 2/3 then E[W1] = (1 + α/3)W0 and to maximize the
expected wealth one must chose α = 1, so that E[W1] = 4/3W0.

The choice α = 1 is made each time 2 p− 1 > 0, that is for any
favorable game.



Now suppose that the game is repeated T times. If one plays
with α = 1 after T games it will have an expected wealth of

E[WT ] =

(
4
3

)T

W0

but the probability to have nothing is equal to

Prob{Wt = 0} = 1−
(

2
3

)T

With T = 10 the expected wealth is E[WT ] ∼ 17 W0 but the
probability to have nothing is around 98%.



Now suppose that the game is repeated T times. If one plays
with α = 1 after T games it will have an expected wealth of

E[WT ] =

(
4
3

)T

W0

but the probability to have nothing is equal to

Prob{Wt = 0} = 1−
(

2
3

)T

With T = 10 the expected wealth is E[WT ] ∼ 17 W0 but the
probability to have nothing is around 98%.



Now suppose that the game is repeated T times. If one plays
with α = 1 after T games it will have an expected wealth of

E[WT ] =

(
4
3

)T

W0

but the probability to have nothing is equal to

Prob{Wt = 0} = 1−
(

2
3

)T

With T = 10 the expected wealth is E[WT ] ∼ 17 W0 but the
probability to have nothing is around 98%.



Consider the evolution of wealth in a sequence of repeated
games

Wt+1 =

{
(1 + α)Wt ifωt = 1
(1− α)Wt ifωt = 0

where ωt is a random variable taking value 1 for a win and 0 for
a loss. The sequence of random variables ω = (ω1, . . . , ωT) is a
random process.

The final level of wealth depends on the number of 1’s and 0’s
in the sequence ω.
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The probability to have t wins in a sequence of length T is
distributed according to a binomial

Prob{wins = t} =
(

T
t

)
pt (1− p)T−t

Example: t = 2 and T = 3. The number of sequence having 2
wins is 3 (the ways or “combinations” of selecting 2 elements in
a set of 3) and the probability to obtain each sequence is
p2 (1− p).

In general how does the distribution of t looks like?
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t ->

binomial with T = 3, p = 2/3

For T = 3 the possible values of t range from 0 to 3. Notice that
Prob[wins = 3] is larger than Prob[wins = 0] because the
probability of a win is larger than 1/2.
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t ->

binomial with T = 9, p = 2/3

For T = 9 the possible values are from 0 to 9. The distribution is
peaked around the mean and median value p ∗ T = 2/3 ∗ 9 = 6.
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t ->

binomial with T = 30, p = 2/3

For T = 30 the distribution has already assumed a bell shape
around p ∗ T = 2/3 ∗ 30 = 20.
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t ->

binomial and normal with T = 30, p = 2/3

The distribution is well approximated by a normal distribution
with mean µ = pT and standard deviation σ =

√
p(1− p)T. In

this case the mean is 20 and the standard deviation 2.58. This
is the Central Limit Theorem at work.
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binomial and normal with T = 30, p = 2/3

Moreover, due to the normal approximations, we can conclude
that in the 99.73% of sequences the number of wins t will be in
the interval

[µ− 3σ, µ+ 3σ] .
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Different betting strategies work best in different cases: α = 0 is
the best if t = 0 and α = 1 is the best if t = T. These are
however unlikely events. It is more effective to have a strategy
that works better around the modal value of the distribution of t.



The most probable level of wealth after T bets for a given α is
Wmodal

T = (1 + α)pT(1− α)(1−p)TW0. It grows exponentially with
T.

Substituting the minimal and maximal value of t for the interval
derived before, in the 99.73% of sequences the wealth at time T
satisfies

1
T

log
WT

Wmodal
T

∈

[
3
√

p(1− p)√
T

log
1− α
1 + α

,
3
√

p(1− p)√
T

log
1 + α

1− α

]
.

When T becomes large the interval is reduced to 0 so that, in
probability

lim
T→∞

Wt = Wmodal
T

which is just the Law of Large Numbers.
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The best betting rule in the long run is the rule which better
performs when the number of wins is equal to the modal value

α∗ = arg max
{
(1 + α)pT (1− α)(1−p)T

}
removing the unnecessary T and taking the log

α∗ = arg max {p log(1 + α) + (1− p) log(1− α)}

Notice that the argument in the previous expression is just the
expected log growth rate E[log(Wt+1/Wt)], thus α∗ is the
log-optimal rule.
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In our case taking the derivative w.r.t. α one has

p
1− α∗

− 1− p
1− α∗

= 0

whose solution reads α∗ = 2p− 1.

According to the log-optimal rule: if the game is favorable
(p>1/2) bet a finite amount of money; if the game is fair (p=1/2)
bet nothing; if the game is unfair one wants to bet a negative
amount, that is take the bet and commit herself to pay the
possible payoff.
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Wealth trajectories associated to different α’s will diverge. Set
w0 = 1 and imagine to play different sequences of games of
length T with a given α and report the wealth levels log(Wt) on
a graph. Then repeat the experiment with a different α.
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When the length of the sequence increases, the performances
of the two strategies becomes more differentiated.
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On a longer time horizon the divergence is clear.
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expected wealth ratios

Starting with the same wealth at time t, consider the wealth at
time t + 1 obtained with two different rules α and α′

Wα
t+1 =

{
(1 + α)Wt if win
(1− α)Wt if loss

Wα′
t+1 =

{
(1 + α′)Wt if win
(1− α′)Wt if loss

.

then the expected ratio at time t + 1 is

E

[
Wα

t+1

Wα′
t+1

]
= p

1 + α

1 + α′
+ (1− p)

1− α
1− α′



ratio-optimal rule

The question is whether there exists a betting rule α′ such that
for any α it is

E

[
Wα

t+1

Wα′
t+1

]
≤ 1 .

By rearranging terms

E

[
Wα

t+1

Wα′
t+1

]
=

p
1 + α′

+
1− p
1− α′

+ α

(
p

1 + α′
− 1− p

1− α′

)

This can be made greater than 1 for some α if the expression
inside parenthesis is different from zero. Thus the only solution
is α′ = 2p− 1 = α∗. ratio-optimal = log-optimal
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absolute vs. relative

The log-optimality is related to the betting rules that beats all
other rules: the probability to have a lower wealth than anyone
else using a different rule tend to zero when the number of
games increases.

This idea is NOT related to the maximization of some function
of the individual wealth, but is instead based on a notion of
relative performance of one rule with respect to other rules.
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Entropy

Given a random variable X taking N values with probabilities
(p1, . . . , pN) its entropy is defined as

S(X) = −
∑

i

pi log pi

The entropy (or negative information, or information loss)
I does no depend on the value taken by the random

variable, but only on its probability distribution.
I is non-negative
I is maximal when the “information” of the variable is

minimal, pi = 1/N
I it is minimal when the random variable is maximally

informative, i.e. there is a j such that pj = 1
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Relative entropy

Given two random variables X and Y taking values on a set of N
events with probabilities (x1, . . . , xN) and (y1, . . . , yN), the
relative entropy or Kullback-Leibler divergence (sometimes
distance) is

D(X|Y) =
∑

i

xi log
xi

yi

and measure the “information” missing for the knowledge of X
when one knows Y.

The relative entropy
I is non-negative
I is asymmetric
I is minimal when X and Y coincides
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entropy-optimal

The expression for the expected log growth rate can be
rewritten as

E[log(Wt+1/Wt)] = −p log p
(1+α)/2 − (1− p) log 1−p

(1−α)/2+

p log p + (1− p) log(1− p) + log(2)

The betting rule can be seen as a random variable taking
values on the two events win and loss with probabilities
proportional to 1 + α and 1− α respectively. Then

E[log(Wt+1/Wt)] ∼ −D({p, 1− p}|betting rule)

the relative entropy of the occurrences (win/loss) given the
betting rule.

Maximizing E[log(Wt+1/Wt)] is equivalent to minimize the
relative entropy. entropy-optimal = log-optimal.
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Summary

The dominant betting rule is the log-optimal rule, the Kelly rule

On average, no other rules can provide an higher level of
wealth in the long run

Under some well specified conditions, the log-optimal rule is
the rule that minimizes the conditional entropy
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